Regulus Therapeutics and UC San Diego to Collaborate on Angiogenic Disease Research Utilizing microRNA Technology

Regulus Therapeutics and UC San Diego to Collaborate on Angiogenic Disease Research Utilizing microRNA Technology

- UC Discovery Grant award to support collaborative research -

La Jolla, Calif., April 14, 2011 - Regulus Therapeutics Inc., a biopharmaceutical company leading the discovery and development of innovative new medicines targeting microRNAs, today announced it is collaborating with researchers at the University of California, San Diego (UCSD) School of Medicine seeking novel treatments for angiogenic diseases using microRNA therapeutics. The research will combine Regulus' leading microRNA platform with UCSD's expertise in animal models of angiogenesis to discover anti-angiogenic microRNA-targeted therapies that could be rapidly translated for treatment of human disease.  The collaborative research program was the recent recipient of a UC Discovery Grant that promotes collaborations between the university's researchers and industry partners.  Financial terms of the grant were not disclosed.

"We are pleased to collaborate with leading scientific institutes like UCSD and to provide industry support for programs such as the UC Discovery Grant," said Hubert C. Chen, M.D., Regulus' vice president of translational medicine. "Regulus continues to demonstrate a leadership position in the field of microRNA therapeutics and is committed to forging partnerships with leading academic and clinical laboratories to advance microRNA biology and therapeutic discovery.  Our network of nearly 30 academic collaborations assists us with the investigation of new microRNAs and supports microRNA discovery efforts that feed the Company's pipeline."

Angiogenesis, which is the formation of new blood vessels, is an important event that contributes to the severity of cancer, diabetes, macular degeneration, inflammatory disease and arthritis.  microRNAs have been implicated in regulating biological networks involved in angiogenesis.

"Our research published last year in Nature Medicine demonstrated that microRNA-132 functions as a novel angiogenic switch that turns on angiogenesis in quiescent endothelial cells, and that targeting with an anti-miR-132 decreases blood vessel formation," said David A. Cheresh, Ph.D., professor of pathology in the UCSD School of Medicine, associate director for translational research at UCSD Moores Cancer Center and principal investigator on the grant. "The objective of our collaborative work with Regulus is to advance these initial discoveries and discover additional microRNAs involved in angiogenic diseases." 

The UC Discovery Grant program promotes collaborations between the university's researchers and industry partners in the interest of supporting cutting-edge research, strengthening the state's economy and serving the public good.

About microRNAs

The discovery of microRNA in humans during the last decade is one of the most exciting scientific breakthroughs in recent history. microRNAs are small RNA molecules, typically 20 to 25 nucleotides in length, that do not encode proteins but instead regulate gene expression. More than 700 microRNAs have been identified in the human genome, and over one-third of all human genes are believed to be regulated by microRNAs. A single microRNA can regulate entire networks of genes. As such, these molecules are considered master regulators of the human genome. microRNAs have been shown to play an integral role in numerous biological processes, including the immune response, cell-cycle control, metabolism, viral replication, stem cell differentiation and human development. Most microRNAs are conserved across multiple species, indicating the evolutionary importance of these molecules as modulators of critical biological pathways. Indeed, microRNA expression or function, has been shown to be significantly altered in many disease states, including cancer, heart failure and viral infections. Targeting microRNAs with anti-miRs, antisense oligonucleotide inhibitors of microRNAs, or miR-mimics, double-stranded oligonucleotides to replace microRNA function opens potential for a novel class of therapeutics and offers a unique approach to treating disease by modulating entire biological pathways. To learn more about microRNAs, please visit

About Regulus Therapeutics Inc.

Regulus Therapeutics is a biopharmaceutical company leading the discovery and development of innovative new medicines targeting microRNAs. Regulus is using a mature therapeutic platform based on technology that has been developed over 20 years and tested in more than 5,000 humans. In addition, Regulus works with a broad network of academic collaborators and leverages the oligonucleotide drug discovery and development expertise of its founding companies, Alnylam Pharmaceuticals (NASDAQ:ALNY) and Isis Pharmaceuticals (NASDAQ:ISIS). Regulus is advancing microRNA therapeutics towards the clinic in several key areas including hepatitis C infection, immuno-inflammatory diseases, fibrosis, oncology and cardiovascular/metabolic diseases. Regulus' intellectual property estate contains both the fundamental and core patents in the field and includes over 600 patents and more than 300 pending patent applications pertaining primarily to chemical modifications of oligonucleotides targeting microRNAs for therapeutic applications. In April 2008, Regulus formed a major alliance with GlaxoSmithKline to discover and develop microRNA therapeutics for immuno-inflammatory diseases. In February 2010, Regulus and GlaxoSmithKline entered into a new collaboration to develop and commercialize microRNA therapeutics targeting microRNA-122 for the treatment of hepatitis C infection. In June 2010, Regulus and sanofi-aventis entered into the largest-to-date strategic alliance for the development of microRNA therapeutics. This alliance is focused initially on fibrosis. For more information, please visit

Forward-Looking Statements

This press release includes forward-looking statements regarding the future therapeutic and commercial potential of Regulus' business plans, technologies and intellectual property related to microRNA therapeutics being discovered and developed by Regulus. Any statement describing Regulus' goals, expectations, financial or other projections, intentions or beliefs is a forward-looking statement and should be considered an at-risk statement. Such statements are subject to certain risks and uncertainties, particularly those inherent in the process of discovering, developing and commercializing drugs that are safe and effective for use as human therapeutics, and in the endeavor of building a business around such products. Such forward-looking statements also involve assumptions that, if they never materialize or prove correct, could cause the results to differ materially from those expressed or implied by such forward-looking statements. Although these forward-looking statements reflect the good faith judgment of Regulus' management, these statements are based only on facts and factors currently known by Regulus. As a result, you are cautioned not to rely on these forward-looking statements. These and other risks concerning Regulus' programs are described in additional detail in each of Alnylam's and Isis' annual report on Form 10-K for the year ended December 31, 2010, which are on file with the SEC. Copies of these and other documents are available from either Alnylam or Isis.