PRESS RELEASE: Researchers Develop Simple Method to Create Natural Drug Products

Researchers Develop Simple Method to Create Natural Drug Products

Scientists replicate assembly of antibacterial molecules in a process previously exclusive to cells

Until now, only the intricate machinery inside cells could take a mix of enzyme ingredients, blend them together and deliver a natural product with an elaborate chemical structure such as penicillin. Researchers at UC San Diego's Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences and the University of Arizona have for the first time demonstrated the ability to mimic this process outside of a cell.

A team led by Qian Cheng and Bradley Moore of Scripps was able to synthesize an antibiotic natural product created by a Hawaiian sea sediment bacterium. They did so by combining a cocktail of enzymes, the protein catalysts inside cells, in a relatively simple mixing process inside a laboratory flask. The research paper, along with a companion study describing a similar process achieved at Harvard Medical School with anti-tumor products, is published in the September issue of Nature Chemical Biology.

Qian Cheng, lead author of the Nature Chemical Biology research paper.
"This study may signal the start of a new era in how drugs are synthesized," said Moore, a professor in the Center for Marine Biotechnology and Biomedicine at Scripps. "Assembling all the enzymes together in a single reaction vessel is a different way to make a complex molecule."

While much more work is needed to employ this process on a mass scale, the achievement proves that such synthesis is possible relatively cheaply and easily-without the use of man-made chemicals-otherwise known as "green" chemistry.

Brad Moore
Most of the medicinal drugs on the market today are made synthetically. Researchers such as Moore and Scripps Oceanography's Bill Fenical have looked to the oceans as rich sources of new natural products to potentially combat diseases such as cancer.

The antibiotic synthesized in Moore's laboratory, called enterocin, was assembled in approximately two hours. Such a compound would normally take months if not a year to prepare chemically, according to Moore.

Rather than a "eureka" moment that led to the breakthrough, Moore said the process was achieved incrementally. The time-consuming work was spent beforehand identifying and preparing the enzymes that would ultimately catalyze the synthesis, also known as assembling the "biosynthetic pathway."

"We've been preparing for some time now a 'biological toolbox,'" said Moore. "In this new process the enzymes become the tools to do the synthesis."

An article in Nature Chemical Biology by Robert Fecik of the University of Minnesota indicated that "... Moore and co-workers have now taken biosynthetic pathway reconstruction to a new level."

An ordinary laboratory flask was used to extract enzymes, the catalysts used to synthesize an antibiotic natural product in Brad Moore's laboratory.
The new research also carries the potential to combine certain natural enzymes to produce new molecules that typically cannot be found in nature with the goal of developing new drugs. Moore calls these "unnatural natural products."

Also joining Cheng and Moore in the research were Dario Meluzzi of the UC San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences and Longkuan Xiang and Miho Izumikawa of the University of Arizona.

The U.S. National Institutes of Health supported the research.

Note to broadcast and cable producers: UC San Diego provides an on-campus satellite uplink facility for live or pre-recorded television interviews. Please phone or e-mail the media contact listed above to arrange an interview.

Scripps Institution of Oceanography, at the University of California, San Diego, is one of the oldest, largest, and most important centers for global science research and graduate training in the world. The National Research Council has ranked Scripps first in faculty quality among oceanography programs nationwide. The scientific scope of the institution has grown since its founding in 1903 to include biological, physical, chemical, geological, geophysical, and atmospheric studies of the earth as a system. Hundreds of research programs covering a wide range of scientific areas are under way today in 65 countries. The institution has a staff of about 1,300, and annual expenditures of approximately $140 million from federal, state, and private sources. Scripps operates one of the largest U.S. academic fleets with four oceanographic research ships and one research platform for worldwide exploration.

Suggested Articles

Inovio CEO J. Joseph Kim is undeterred by short sellers and other detractors who doubt his company can shuttle a COVID-19 DNA vaccine to market.

Adding entinostat to hormone therapy did not help patients with HR-positive, HER2-negative breast cancer live longer.

The data add to the evidence in support of the IL-6 drug ahead of a FDA decision to approve it in a rare disease served by Alexion’s Soliris.