Gilead’s Kite pens 10-target CAR-T tech deal with MaxCyte

MaxCyte thinks the technology will shorten and simplify the CAR-T production process. (Gilead China)

Gilead’s Kite Pharma has expanded its CAR-T agreement with MaxCyte. The revised deal gives Kite the chance to apply MaxCyte’s transfection technology to up to 10 targets.

Kite first struck a deal to use MaxCyte’s technology, dubbed Flow Electroporation, in November. Now, Kite has significantly expanded the deal by securing the right to use the technology in the nonviral engineering of CAR-T therapies against up to 10 targets. MaxCyte granted Kite nonexclusive access to the technology in return for a financial package featuring development and approval milestones.

"We're excited to take our relationship with Kite further into product development, providing the company the ability to leverage MaxCyte's versatile cell engineering platform to enable the power of gene-editing for clinical and commercial development of critical new CAR-T therapeutics," MaxCyte CEO Doug Doerfler said in a statement.


Like this story? Subscribe to FierceBiotech!

Biopharma is a fast-growing world where big ideas come along every day. Our subscribers rely on FierceBiotech as their must-read source for the latest news, analysis and data in the world of biotech and pharma R&D. Sign up today to get biotech news and updates delivered to your inbox and read on the go.

The quick decision to expand the agreement suggests Kite, like other companies before it, was won over by the technology. MaxCyte’s platform uses an electrical field to reverse the permeability of cell membranes and enable molecules to pass into the cell, eliminating the use of chemicals or viruses.

Applied to autologous CAR-T therapies, MaxCyte thinks the technology will shorten and simplify the production process, enabling companies to get drugs to cancer patients sooner and for less money. If MaxCyte’s technology lives up to that billing, it could lessen two of the big shortcomings of existing CAR-Ts, namely the cost of making them and the lag between prescription and treatment.

MaxCyte is working on its own CAR-T candidates while licensing its technology to other companies. For its in-house pipeline, MaxCyte has used the technology to create autologous CAR-Ts using human mRNA. 

Suggested Articles

The FDA has cleared its first duodenoscope designed to make the intricate, moving and difficult-to-clean parts in the head of the device disposable.

As Relay looks to enter the clinic in 2020, the company is adding a trio of biopharma vets to its leadership team.

A phase 3 trial of Myovant Sciences’ relugolix in prostate cancer has met its primary endpoint, teeing the company up to file for FDA approval.