Harvard's Wyss Institute and AstraZeneca announce collaboration on Organs-on-Chips for drug safety testing

Oct. 16 -- BOSTON -- Today the Wyss Institute for Biologically Inspired Engineering at Harvard University and AstraZeneca announced a collaboration that will leverage the Institute's Organs-on-Chips technologies to better predict safety of drugs in humans.

Human Organs-on-Chips are composed of a clear, flexible polymer about the size of a computer memory stick, and contain hollow microfluidic channels lined by living human cells -- allowing researchers to recreate the physiological and mechanical functions of the organ, and to observe what happens in real time. The goal is to provide more predictive and useful measures of the efficacy and safety of potential new drugs in humans -- which could represent an important step in reducing the need for traditional animal testing.

The collaboration with AstraZeneca will apply the Institute's advances in the development and validation of human Organs-on-Chips to develop new animal versions. These animal organs-on-chips will be tested alongside the human models to further understand the extent to which drug safety results in animals can predict how an investigational drug might impact humans. The testing of a potential new medicine on animals is a small but necessary step in bringing this medicine to market. Regulators require safety data from animal studies before giving the required approval to test a new medicine in humans. However, animal tests do not always accurately predict what will happen in humans.

"Comparing human and animal Organs-on-Chips is an exciting example of what we call 'predictive science,' in which we harness the power of technology to better understand how a medicine might ultimately impact patients and in some cases speed the delivery of innovative new medicines," said Stefan Platz, Vice President Drug Safety and Metabolism at AstraZeneca. "The Wyss Institute's technology could play a critical role in both improving patient safety and reducing the need for animal testing."

In February, Wyss Founding Director Don Ingber, M.D., Ph.D., who leads the Organs-on-Chips research program, received the prestigious 3Rs Prize from the UK's National Centre for the Replacement, Refinement and Reduction of Animals in Research for the lung-on-a-chip. In March the Society of Toxicology awarded him the Leading Edge in Basic Science Award for his "seminal scientific contributions and advances to understanding fundamental mechanisms of toxicity."

"This collaboration with AstraZeneca will help us to validate this approach as a potential alternative to animal testing by carrying out direct comparisons between organ chips containing cells from animals versus humans in organ-mimicking environments," said Ingber. "If successful, this effort should lead to ways to streamline the drug development process and more effectively predict safety of drugs and chemicals in humans."

###

*Part of this research was sponsored by the U.S. Army Research Office (ARO) and DARPA. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of ARO, DARPA or the U.S. Government.

CONTACTS

Wyss Institute for Biologically Inspired Engineering at Harvard University
Mary Tolikas
[email protected]

AstraZeneca
Laura Woodin
[email protected]

IMAGE AVAILABLE

###

About the Wyss Institute for Biologically Inspired Engineering at Harvard University

The Wyss Institute for Biologically Inspired Engineering at Harvard University (http://wyss.harvard.edu) uses Nature's design principles to develop bioinspired materials and devices that will transform medicine and create a more sustainable world. Working as an alliance among Harvard's Schools of Medicine, Engineering, and Arts & Sciences, and in partnership with Beth Israel Deaconess Medical Center, Brigham and Women's Hospital, Boston Children's Hospital, Dana Farber Cancer Institute, Massachusetts General Hospital, the University of Massachusetts Medical School, Spaulding Rehabilitation Hospital, Boston University, Tufts University, and Charité - Universitätsmedizin Berlin, the Institute crosses disciplinary and institutional barriers to engage in high-risk research that leads to transformative technological breakthroughs. By emulating Nature's principles, Wyss researchers are developing innovative new engineering solutions for healthcare, energy, architecture, robotics, and manufacturing. These technologies are translated into commercial products and therapies through collaborations with clinical investigators, corporate alliances, and new start-ups. The Wyss Institute recently won the prestigious World Technology Network award for innovation in biotechnology.

About AstraZeneca

AstraZeneca is a global, innovation-driven biopharmaceutical business that focuses on the discovery, development and commercialization of prescription medicines, primarily for the treatment of cardiovascular, metabolic, respiratory, inflammation, autoimmune, oncology, infection and neuroscience diseases. AstraZeneca operates in over 100 countries and its innovative medicines are used by millions of patients worldwide. For more information please visit: www.astrazeneca.com