MicroRNA regulation of tumor-killing viruses avoids unwanted viral pathology

MicroRNA regulation of tumor-killing viruses avoids unwanted viral pathology

Scientists have determined how to produce replication-competent viruses with key toxicities removed, providing a new platform for development of improved cancer treatments and better vaccines for a broad range of viral diseases.

Cellular microRNA molecules regulate the stability of mRNA in different cell types, and this newly-understood mechanism provides the possibility to engineer viruses for cell-specific inactivation. Cancer Research UK scientists at the University of Oxford, United Kingdom, with support from colleagues at Vrije Universiteit, Amsterdam, report that this approach can be used to regulate proliferation of adenovirus in a study published May 22 in the open-access journal PLoS Pathogens.

Adenovirus is a DNA virus widely used in cancer therapy but which causes hepatic disease in mice. Professor Len Seymour and colleagues found that introducing sites into the virus genome that are recognized by microRNA 122 leads to hepatic degradation of important viral mRNA, thereby diminishing the virus' ability to adversely affect the liver, while maintaining its ability to replicate in and kill tumor cells.

Tumor-killing replicating viruses are a hot topic in the biotherapeutics arena, with many clinical trials ongoing worldwide. That Professor Seymour's group set out to and has now defined a mechanism whereby wild type virus potency could be maintained in tumor cells but the virus could be 'turned off' in tissues vulnerable to pathology adds important information to the current base of knowledge.

"This approach is surprisingly effective and quite versatile. It could find a range of applications in controlling the activity of therapeutic viruses, both for cancer research and also to engineer a new generation of conditionally-replicating vaccines, where the vaccine pathogen is disabled in its primary sites of toxicity," Professor Seymour says.

The present study was intended mainly to explore and demonstrate the potential of this new mechanism to regulate virus activity. Although the current tumor-killing virus is useful in mice, transfer of the technology into the clinical setting will require re-engineering of the virus to overcome virus pathologies seen in humans, and it will be at least two years before this can be tested in the clinics.

###

 

FINANCIAL DISCLOSURE: RC and FC are supported by Cancer Research UK (http://www.cancer.org.uk/), HC by a research studentship from the New Zealand Government, and MB by a Bellhouse Foundation Fellowship (Magdalen College, Oxford). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

COMPETING INTERESTS: The authors have declared that no competing interests exist.

PLEASE ADD THIS LINK TO THE PUBLISHED ARTICLE IN ONLINE VERSIONS OF YOUR REPORT: http://dx.plos.org/10.1371/journal.ppat.1000440 (link will go live upon embargo lift)

CITATION: Cawood R, Chen HH, Carroll F, Bazan-Peregrino M, van Rooijen N, et al. (2009) Use of Tissue-Specific MicroRNA to Control Pathology of Wild-Type Adenovirus without Attenuation of Its Ability to Kill Cancer Cells. PLoS Pathog 5(5): e1000440. doi:10.1371/journal.ppat.1000440

CONTACT:

Emma Gilgunn-Jones
Cancer Research UK
00 44 (0)207 061 8311
00 44 (0) 7050 264 059 (out-of-hours)
[email protected]

 


 

Disclaimer

This press release refers to an upcoming article in PLoS Pathogens. The release is provided by the article authors. Any opinions expressed in these releases or articles are the personal views of the journal staff and/or article contributors, and do not necessarily represent the views or policies of PLoS. PLoS expressly disclaims any and all warranties and liability in connection with the information found in the releases and articles and your use of such information.

About PLoS Pathogens

PLoS Pathogens (www.plospathogens.org) publishes outstanding original articles that significantly advance the understanding of pathogens and how they interact with their host organisms. All works published in PLoS Pathogens are open access. Everything is immediately available subject only to the condition that the original authorship and source are properly attributed. Copyright is retained by the authors. The Public Library of Science uses the Creative Commons Attribution License.

About the Public Library of Science

The Public Library of Science (PLoS) is a non-profit organization of scientists and physicians committed to making the world's scientific and medical literature a freely available public resource. For more information, visit http://www.plos.org.

Suggested Articles

Pillar is bankrolling a new accelerator for budding biotechs. Petri aims to serve biotech startups at the “frontier of biology and engineering.”

One of the last major, late-stage attempt at stopping Alzheimer’s using a BACE inhibitor has ended up on the trash pile with so many others.

The oligosaccharide microbiome modulator was no better than placebo at reducing lactose intolerance symptoms.