Humacyte Highlights Preclinical Data Of Its Investigational Bioengineered Blood Vessel

Humacyte Highlights Preclinical Data Of Its Investigational Bioengineered Blood Vessel

  • Humacyte investigational bioengineered blood vessel technology represents a research and development milestone in the field of vascular tissue engineering.
  • Preclinical data on the investigational bioengineered blood vessel were presented at the American Society for Nephrology 'Kidney Week' meeting.
  • The pre-clinical data suggest that the Humacyte technology may have the potential to be associated with lowered vessel clotting and incorporation with animal model tissues.

RESEARCH TRIANGLE PARK, N.C., November 13, 2013Humacyte, Inc., a pioneer in regenerative medicine, presented the results of foundational U.S. preclinical studies of its investigational bioengineered blood vessel at the American Society of Nephrology's 'Kidney Week 2013' Annual Meeting in Atlanta, GA.

The scientific presentation – by Shannon L. M. Dahl, Ph.D., co-founder and vice president, Technology and Pipeline Development, Humacyte – summarized U.S. preclinical data of the company's investigational bioengineered vessel technology, which is being developed for use as the first off-the-shelf, human-derived, artificial blood vessel. The presentation's title was 'Preclinical Dataset Supports Initiation of Clinical Studies for Bioengineered Vascular Access Grafts.' Co-authors were: Jeffrey H. Lawson, M.D., Ph.D.; Heather L. Prichard, Ph.D.; Roberto J. Manson, M.D.; William E.Tente, M.S.; Alan P. Kypson, M.D.; Juliana L. Blum, Ph.D.; and Laura E. Niklason, M.D., Ph.D.

Potential Of Investigational Bioengineered Vessels Explored In Pre-Clinical Studies

These U.S. preclinical data suggest that the investigational bioengineered vessel may be associated with lowered vessel clotting and incorporation with animal model tissues. This investigational technology is being developed with the goal of pursuing approval for use in patients with chronic kidney disease, a major global health problem affecting 26 million Americans[1] and around 40 million people in the European Union (EU).[2] Individuals who progress to end-stage renal disease (ESRD) require renal replacement therapy (hemodialysis or kidney transplant); more than 380,000 patients currently require hemodialysis in the U.S.,[3] and some 250,000 patients require hemodialysis or have had kidney transplants in the EU.[4]

In ESRD patients, synthetic vascular grafts are prone to wall thickening, which results in graft clotting. Such clotting is the major cause of graft failures. As a result, ESRD patients experience frequent hospitalization and re-operation. The investigational bioengineered vessels, if successfully developed and approved by regulatory authorities, could offer the potential for significant cost savings to the healthcare system if approved for use in patients who require vascular access for ESRD. These investigational bioengineered vessels represent a research and development milestone in the field of vascular tissue engineering, as this technology could have the potential to help reduce or avoid surgical interventions and hospitalizations for patients with ESRD.

First Off-the-Shelf Investigational Bioengineered Vessel In Clinical Studies

"In the preclinical studies described, our investigational bioengineered vessels were repopulated with cells and remodeled like living tissue in the animal model," said Dr. Dahl. "These investigational bioengineered vessels are produced using donated human vascular cells and then go through a process that is intended to decellularize the investigational vessels to remove the donor identity from the newly created vessels. This process is designed to produce investigational human grafts with the potential to be implanted into any patient at the time of medical need, enabling our investigational product to become the first truly off-the-shelf engineered graft to have moved into clinical evaluation. Demonstrating safety and performance in patients with end-stage renal disease could set the stage for follow-on development of our technology in other vascular procedures, such as replacement or bypass of diseased vessels, of vessels damaged by trauma, or for other vascular procedures."

In 2012, Humacyte submitted an Investigational New Drug (IND) application to the U.S. Food and Drug Administration to conduct a multi-center U.S. clinical trial, involving up to 20 patients across three sites. In this trial, which will assess safety and performance of the investigational bioengineered vessels to provide vascular access for hemodialysis in ESRD patients, the first investigational bioengineered vessel was implanted in the arm of a kidney dialysis patient at Duke University Hospital in June, 2013.

European studies are already underway; as part of a multi-center study in Poland, the first patients were implanted with the investigational vessels in December 2012 and the vessels were first used for hemodialysis in February 2013. The primary endpoints of the study in Poland are safety, tolerability, and patency, to be examined at each visit within the first six months after graft implantation (see clinicaltrials.gov).

Studies Planned in Additional Patient Populations

Humacyte also will carry out a study in Poland to test safety and performance of the investigational bioengineered vessel as an above-knee bypass graft in patients with peripheral arterial disease (PAD). The study began in October of this year.

First-in-human interim study results for the investigational bioengineered vessel technology from Humacyte will be presented on Wednesday, November 20, 2013, at the American Heart Association Scientific Sessions (abstract) in Dallas, TX.

About Investigational Bioengineered Blood Vessels

The Humacyte investigational bioengineered blood vessels are manufactured in a novel bioreactor system. The investigational bioengineered vessels go through a process of decellularization, which is designed to render vessels potentially non-immunogenic and implantable into any patient. These investigational bioengineered vessels are designed to be stored for up to 12 months under standard refrigerated conditions, including, if successfully developed and approved, on-site in hospitals. Subject to receipt of regulatory approval, these properties could make the investigational bioengineered vessels readily available to surgeons and patients, and could eliminate the wait for vessel production or shipping. Data from studies of the investigational bioengineered vessels in large animal models reflect resistance to thickening for up to one year, and the early human studies that are now underway will provide safety and performance  data in patients to support a future application for regulatory approval.

About Humacyte

Humacyte, Inc., a privately held company founded in 2005, is a medical research, discovery and development company with clinical and pre-clinical stage investigational products. Humacyte is primarily focused on developing and commercializing a proprietary novel technology based on human tissue-based products for key applications in regenerative medicine and vascular surgery.  The company uses its innovative and proprietary platform technology to engineer human, extracellular matrix-based tissues that are designed be shaped into tubes, sheets, or particulate conformations, with properties similar to native tissues. These are being developed for potential use in many specific applications, with the goal to significantly improve treatment outcomes for a variety of patients, including those with vascular disease and those requiring hemodialysis. The company's proprietary technologies are designed to result in off-the-shelf products that, once approved, can be utilized in any patient. The company web site is www.humacyte.com.

Forward-Looking Statement

Information in this news release contains "forward-looking statements" about Humacyte. These statements, including statements regarding management's projections relating to future results and operations, are based on, among other things, management's views, assumptions and estimates, developed in good faith, all of which are subject to known and unknown factors that may cause actual results, performance or achievements, or industry results, to differ materially from those expressed or implied by such forward-looking statements.

                                                            # # #

Media Contacts:

Gail Thornton

West Mill Consulting

908-392-3420

[email protected]

 

Jim Modica

West Mill Consulting

908-872-4919

[email protected]